There is an integer matrix which has the following features:
- The numbers in adjacent positions are different.
- The matrix has n rows and m columns.
- For all i < m, A[0][i] < A[1][i] && A[n - 2][i] > A[n - 1][i].
- For all j < n, A[j][0] < A[j][1] && A[j][m - 2] > A[j][m - 1].
We define a position P is a peek if:
A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]
Find a peak element in this matrix. Return the index of the peak.
Example
Given a matrix:
[ [1 ,2 ,3 ,6 ,5], [16,41,23,22,6], [15,17,24,21,7], [14,18,19,20,10], [13,14,11,10,9] ]
return index of 41 (which is [1,1]) or index of 24 (which is [2,2])
Do binary search on each row as Find Peak Element.
Time: O(m * logn)
Space: O(1)
class Solution {
public List<Integer> findPeakII(int[][] A) {
List<Integer> result = new ArrayList<>();
for (int row = 0; row < A.length; row++) {
int col = findPeakInRow(A[row]);
if ((row == 0 || A[row][col] > A[row - 1][col]) &&
(row == A.length - 1 || A[row][col] > A[row + 1][col])) {
result.add(row);
result.add(col);
break;
}
}
return result;
}
private int findPeakInRow(int[] A) {
int start = 0;
int end = A.length - 1;
while (start < end) {
int mid = start + (end - start) / 2;
if (A[mid] > A[mid + 1]) {
end = mid;
} else {
start = mid + 1;
}
}
return start;
}
}