Numbers can be regarded as product of its factors. For example,
8 = 2 x 2 x 2; = 2 x 4.
Write a function that takes an integer n and return all possible combinations of its factors.
Note:
- Each combination's factors must be sorted ascending, for example: The factors of 2 and 6 is [2, 6], not [6, 2].
- You may assume that n is always positive.
- Factors should be greater than 1 and less than n.
Examples:
input: 1 output: []
input: 37 output: []
input: 12 output: [ [2, 6], [2, 2, 3], [3, 4] ]
input: 32 output: [ [2, 16], [2, 2, 8], [2, 2, 2, 4], [2, 2, 2, 2, 2], [2, 4, 4], [4, 8] ]
Using dfs to search the result. Pay special attention that in order to keep factor in ascending order, we want to pass a start parameter to the recursive function to make sure it will only try larger factors.
Time: O(n * logn)
Space: O(logn)
public class Solution {
private List<List<Integer>> result;
public List<List<Integer>> getFactors(int n) {
result = new ArrayList<>();
if (n <= 1) {
return result;
}
dfs(new ArrayList<>(), n, 2);
return result;
}
private void dfs(List<Integer> path, int n, int start) {
if (n == 1) {
if (path.size() > 1) {
result.add(new ArrayList<>(path));
}
return;
}
int maxFactor = Math.max(2, (int)Math.sqrt(n));
for (int factor = start; factor <= maxFactor; factor++) {
if (n % factor == 0) {
path.add(factor);
dfs(path, n / factor, factor);
path.remove(path.size() - 1);
}
}
}
}