Given a directed graph, design an algorithm to find out whether there is a route between two nodes.
Example
Given graph:
A----->B----->C \ | \ | \ | \ v ->D----->E
for s = B and t = E, return true
for s = D and t = C, return false
Time: O(N)
Space: O(N)
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* };
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
return dfs(s, t, new HashSet<DirectedGraphNode>());
}
private boolean dfs(DirectedGraphNode s, DirectedGraphNode t,
Set<DirectedGraphNode> visited) {
if (s == t) {
return true;
}
visited.add(s);
for (DirectedGraphNode neighbor : s.neighbors) {
if (!visited.contains(neighbor)) {
if (dfs(neighbor, t, visited)) {
return true;
}
}
}
return false;
}
}
Time: O(N)
Space: O(N)
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* };
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
if (s == t) {
return true;
}
Queue<DirectedGraphNode> queue = new LinkedList<>();
Set<DirectedGraphNode> visited = new HashSet<DirectedGraphNode>();
queue.offer(s);
visited.add(s);
while (!queue.isEmpty()) {
DirectedGraphNode cur = queue.poll();
for (DirectedGraphNode neighbor : cur.neighbors) {
if (neighbor == t) {
return true;
}
if (!visited.contains(neighbor)) {
queue.offer(neighbor);
visited.add(neighbor);
}
}
}
return false;
}
}