Given an array of integers, find a continuous subarray which sums to a given number, return the
index pair. Example: {3, 1, 5, 6, 2, 5, 3}, target sum is 12, should return {1, 3}, which means 1+5+6=12
If the array only contains non-negative numbers, it can be solved using sliding window.
We can use the same method as Subarray Sum. The idea is to store the sum from index 0 to i as the key. We can denote it as sum[i]. In this way, when given a new number, we only need to check if sum[j] - target
exists in the map. If it exist in the map, it means that num[i+1], nums[i+2], ..., num[j] sums up to target.
Time: O(n)
Space: O(n)
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
public class Solution {
public int[] findTarget(int[] nums, int target) {
int[] result = new int[2];
Arrays.fill(result, -1);
if (nums == null || nums.length == 0) {
return new int[0];
}
Map<Integer, Integer> map = new HashMap<>();
map.put(0, -1);
int totalSum = 0;
for (int i = 0; i < nums.length; ++i) {
totalSum += nums[i];
if (map.containsKey(totalSum - target)) {
result[0] = map.get(totalSum - target) + 1;
result[1] = i;
break;
}
map.put(totalSum, i);
}
return result;
}
public static void main(String[] args) {
int[] nums = {3, 5, -1, -2, 4, 3, -2, 1};
int[] result = new Solution().findTarget(nums, 6);
System.out.println(result[0] + " " + result[1]);
}
}